# **Introduction to Three Dimensional Geometry**

#### Question 1.

The projections of a directed line segment on the coordinate axes are 12, 4, 3. The DCS of the line are

- (a) 12/13, -4/13, 3/13
- (b) -12/13, -4/13, 3/13
- (c) 12/13, 4/13, 3/13
- (d) None of these

Answer: (c) 12/13, 4/13, 3/13

Let AB be the given line and the DCs of AB be l, m, n. Then

Projection on x-axis = AB  $\cdot$  1 = 12 (Given)

Projection on y-axis =  $AB \cdot m = 4$  (Given)

Projection on z-axis = AB  $\cdot$  n = 3 (Given)

$$\Rightarrow$$
 (AB<sup>2</sup>) (l<sup>2</sup> + m<sup>2</sup> + n<sup>2</sup>) = 144 + 16 + 9

$$\Rightarrow$$
 (AB<sup>2</sup>) = 169 {since  $1^2 + m^2 + n^2 = 1$ }

$$\Rightarrow$$
 AB = 13

Hence, DCs of AB are 12/13, 4/13, 3/13

# Question 2.

The angle between the planes  $r \cdot n_1 = d_1$  and  $r \cdot n_1 = d_2$  is

- (a)  $\cos \theta = \{|n_1| \times |n_2|\} / (n_1, n_2)$
- (b)  $\cos \theta = (n_1 \cdot n_2)/\{|n_1| \times |n_2|\}^2$
- (c)  $\cos \theta = (n_1 \cdot n_2)/\{|n_1| \times |n_2|\}$
- (d)  $\cos \theta = (n_1 \cdot n_2)^2 / \{|n_1| \times |n_2|\}$

Answer: (c)  $\cos \theta = (n_1 \cdot n_2)/\{|n_1| \times |n_2|\}$ 

The angle between the planes r .  $n_1 = d_1$  and r .  $n_2 = d_2$  is defined as

 $\cos \theta = (n_1 \cdot n_2)/\{|n_1| \times |n_2|\}$ 

## Question 3.

For every point P(x, y, z) on the xy-plane

- (a) x = 0
- (b) y = 0
- (c) z = 0
- (d) None of these

Answer: (c) z = 0

The perpendicular distance of P(x, y, z) from xy-plane is zero.

## Question 4.

The locus of a point P(x, y, z) which moves in such a way that x = a and y = b, is a

- (a) Plane parallel to xy-plane
- (b) Line parallel to x-axis
- (c) Line parallel to y-axis
- (d) Line parallel to z-axis

Answer: (b) Line parallel to x-axis

Since x = 0 and y = 0 together represent x-axis, therefore x = a and y = b represent a line parallel to x-axis.

# Question 5.

The equation of the plane containing the line 2x - 5y + z = 3, x + y + 4z = 5 and parallel to the plane x + 3y + 6z = 1 is

(a) 
$$x + 3y + 6z + 7 = 0$$

(b) 
$$x + 3y - 6z - 7 = 0$$

(c) 
$$x - 3y + 6z - 7 = 0$$

(d) 
$$x + 3y + 6z - 7 = 0$$

Answer: (d) x + 3y + 6z - 7 = 0

Let the equation of the plane is

$$(2x - 5y + z - 3) + \lambda(x + y + 4z - 5) = 0$$

$$\Rightarrow (2+\lambda)x + (\lambda-5)y + (4\lambda+1)z - (3+5\lambda) = 0$$

Since the plane is parallel to x + 3y + 6z - 1 = 0

$$\Rightarrow (2+\lambda)/1 = (\lambda - 5)/3 = (1+4\lambda)/6$$

$$\Rightarrow$$
 6 + 3 $\lambda$  =  $\lambda$  - 5

$$\Rightarrow 2\lambda = -11$$

$$\Rightarrow \lambda = -11/2$$

Again,

$$6\lambda - 30 = 3 + 12\lambda$$

$$\Rightarrow$$
 -6 $\lambda$  = -33

$$\Rightarrow \lambda = -33/6$$

$$\Rightarrow \lambda = -11/2$$

So, the required equation of plane is

$$(2x-5y+z-3)+(-11/2)\times(x+y+4z-5)=0$$

$$\Rightarrow 2(2x - 5y + z - 3) + (-11) \times (x + y + 4z - 5) = 0$$

$$\Rightarrow$$
 4x - 10y + 2z - 6 - 11x - 11y - 44z + 55 = 0

$$\Rightarrow$$
 -7x - 21y - 42z + 49 = 0

$$\Rightarrow x + 3y + 6z - 7 = 0$$

#### Question 6.

The coordinate of foot of perpendicular drawn from the point A(1, 0, 3) to the join of the point B(4, 7, 1) and C(3, 5, 3) are

- (a) (5/3, 7/3, 17/3)
- (b) (5, 7, 17)
- (c) (5/3, -7/3, 17/3)
- (d) (5/7, -7/3, -17/3)

Answer: (a) (5/3, 7/3, 17/3)

Let D be the foot of perpendicular and let it divide BC in the ration m: 1

Then the coordinates of D are  $\{(3m + 4)/(m + 1), (5m + 7)/(m + 1), (3m + 1)/(m + 1)\}$ 

Now, AD  $\perp$  BC

$$\Rightarrow$$
 AD . BC = 0

$$\Rightarrow$$
 -(2m + 3) - 2(5m + 7) - 4 = 0

$$\Rightarrow$$
 m = -7/4

So, the coordinate of D are (5/3, 7/3, 17/3)

## Question 7.

The coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ plane is (a) (0, 17/2, 13/2)

- (a) (0, 17/2, 13/2) (b) (0, -17/2, -13/2)
- (c) (0, 17/2, -13/2)
- (d) None of these

Answer: (c) (0, 17/2, -13/2)

The line passing through the points (5, 1, 6) and (3, 4, 1) is given as

$$(x-5)/(3-5) = (y-1)/(4-1) = (z-6)/(1-6)$$

$$\Rightarrow$$
  $(x-5)/(-2) = (y-1)/3 = (z-6)/(-5) = k(say)$ 

$$\Rightarrow$$
  $(x-5)/(-2) = k$ 

$$\Rightarrow$$
 x - 5 = -2k

$$\Rightarrow$$
 x = 5 - 2k

$$(y-1)/3 = k$$

$$\Rightarrow$$
 y - 1 = 3k

$$\Rightarrow$$
 y = 3k + 1

and 
$$(z-6)/(-5) = k$$

$$\Rightarrow$$
 z - 6 = -5k

$$\Rightarrow$$
 z = 6 - 5k

Now, any point on the line is of the form (5-2k, 3k+1, 6-5k)

The equation of YZ-plane is x = 0

Since the line passes through YZ-plane

So, 
$$5 - 2k = 0$$

$$\Rightarrow$$
 k = 5/2

Now, 
$$3k + 1 = 3 \times 5/2 + 1 = 15/2 + 1 = 17/2$$

and 
$$6 - 5k = 6 - 5 \times 5/2 = 6 - 25/2 = -13/2$$

Hence, the required point is (0, 17/2, -13/2)

#### Question 8.

If P is a point in space such that OP = 12 and OP inclined at angles 45 and 60 degrees with OX and OY respectively, then the position vector of P is

- (a)  $6i + 6j \pm 6\sqrt{2}k$
- (b)  $6i + 6\sqrt{2}j \pm 6k$
- $(c) 6\sqrt{2}i + 6j \pm 6k$
- (d) None of these

Answer: (c)  $6\sqrt{2}i + 6j \pm 6k$ 

Let l, m, n be the DCs of OP.

Then it is given that  $l = \cos 45 = 1/\sqrt{2}$ 

$$m = \cos 60 = 1/2$$

Now, 
$$l^2 + m^2 + n^2 = 1$$

$$\Rightarrow 1/2 + 1/4 + n^2 = 1$$

$$\Rightarrow$$
 n<sup>2</sup> = 1/4

$$\Rightarrow$$
 n =  $\pm 1/2$ 

Now, 
$$r = |r|(|i + mj + nk)$$

$$\Rightarrow$$
 r = 12(i/ $\sqrt{2}$  + j/ $\sqrt{2}$  ± k/ $\sqrt{2}$ )

$$\Rightarrow r = 6\sqrt{2}i + 6j \pm 6k$$

# Question 9.

The image of the point P(1,3,4) in the plane 2x - y + z = 0 is

- (a) (-3, 5, 2)
- (b)(3,5,2)

(c)(3, -5, 2)

(d)(3, 5, -2)

Answer: (a) (-3, 5, 2)

Let image of the point P(1, 3, 4) is Q in the given plane.

The equation of the line through P and normal to the given plane is

$$(x-1)/2 = (y-3)/-1 = (z-4)/1$$

Since the line passes through Q, so let the coordinate of Q are (2r + 1, -r + 3, r + 4)

Now, the coordinate of the mid-point of PQ is

$$(r + 1, -r/2 + 3, r/2 + 4)$$

Now, this point lies in the given plane.

$$2(r+1) - (-r/2 + 3) + (r/2 + 4) + 3 = 0$$

$$\Rightarrow$$
 2r + 2 + r/2 - 3 + r/2 + 4 + 3 = 0

$$\Rightarrow$$
 3r + 6 = 0

$$\Rightarrow$$
 r = -2

Hence, the coordinate of Q is (2r + 1, -r + 3, r + 4) = (-4 + 1, 2 + 3, -2 + 4)

=(-3,5,2)

#### Question 10.

There is one and only one sphere through

- (a) 4 points not in the same plane
- (b) 4 points not lie in the same straight line
- (c) none of these
- (d) 3 points not lie in the same line

Answer: (a) 4 points not in the same plane

Sphere is referred to its center and it follows a quadratic equation with 2 roots. The mid-point of chords of a sphere and parallel to fixed direction lies in the normal diametrical plane.

Now, general equation of the plane depends on 4 constants. So, one sphere passes through 4 points and they need not be in the same plane.

## Ouestion 11.

The points on the y- axis which are at a distance of 3 units from the point (2, 3, -1) is

- (a) either (0, -1, 0) or (0, -7, 0)
- (b) either (0, 1, 0) or (0, 7, 0)
- (c) either (0, 1, 0) or (0, -7, 0)
- (d) either (0, -1, 0) or (0, 7, 0)

Answer: (d) either (0, -1, 0) or (0, 7, 0)

Let the point on y-axis is O(0, y, 0)

Given point is A(2, 3, -1)

Given 
$$OA = 3$$

$$\Rightarrow$$
 OA<sup>2</sup> = 9

$$\Rightarrow (2-0)^2 + (3-y)^2 + (-1-0)^2 = 9$$

$$\Rightarrow 4 + (3 - y)^2 + 1 = 9$$

$$\Rightarrow 5 + (3 - y)^2 = 9$$

$$\Rightarrow (3 - y)^2 = 9 - 5$$

$$\Rightarrow (3 - y)^2 = 4$$

$$\Rightarrow 3 - y = \sqrt{4}$$

$$\Rightarrow$$
 3 - y =  $\pm$ 4

$$\Rightarrow$$
 3 - y = 4 and 3 - y = -4

$$\Rightarrow$$
 y = -1, 7

So, the point is either (0, -1, 0) or (0, 7, 0)

## Question 12.

The coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ plane is

(a) (0, 17/2, 13/2)

(b) 
$$(0, -17/2, -13/2)$$

$$(c)(0, 17/2, -13/2)$$

Answer: (c) (0, 17/2, -13/2)

The line passing through the points (5,1,6) and (3,4,1) is given as

$$(x-5)/(3-5) = (y-1)/(4-1) = (z-6)/(1-6)$$

$$\Rightarrow$$
  $(x-5)/(-2) = (y-1)/3 = (z-6)/(-5) = k(say)$ 

$$\Rightarrow (x-5)/(-2) = k$$

$$\Rightarrow$$
 x - 5 = -2k

$$\Rightarrow$$
 x = 5 - 2k

$$(y-1)/3 = k$$

$$\Rightarrow$$
 y - 1 = 3k

$$\Rightarrow$$
 y = 3k + 1

and 
$$(z-6)/(-5) = k$$

$$\Rightarrow$$
 z - 6 = -5k

$$\Rightarrow$$
 z = 6 - 5k

Now, any point on the line is of the form (5-2k, 3k+1, 6-5k)

The equation of YZ-plane is x = 0

Since the line passes through YZ-plane

So, 
$$5 - 2k = 0$$

$$\Rightarrow k = 5/2$$

Now, 
$$3k + 1 = 3 \times 5/2 + 1 = 15/2 + 1 = 17/2$$

and 
$$6 - 5k = 6 - 5 \times 5/2 = 6 - 25/2 = -13/2$$

Hence, the required point is (0, 17/2, -13/2)

#### Question 13.

he equation of plane passing through the point i+j+k and parallel to the plane r. (2i-j+2k)=5 is

(a) 
$$r \cdot (2i - j + 2k) = 2$$

(b) r. 
$$(2i-i+2k) = 3$$

(c) r. 
$$(2i-j+2k)=4$$

(d) r. 
$$(2i - j + 2k) = 5$$

Answer: (b) r . 
$$(2i - j + 2k) = 3$$

The equation of plane parallel to the plane r. (2i - j + 2k) = 5 is

$$r.(2i-j+2k)=d$$

Since it passes through the point i + j + k, therefore

$$(i + j + k) \cdot (2i - j + 2k) = d$$

$$\Rightarrow$$
 d = 2 - 1 + 2

$$\Rightarrow$$
 d = 3

So, the required equation of the plane is

$$r \cdot (2i - j + 2k) = 3$$

# Question 14.

The cartesian equation of the line is 3x + 1 = 6y - 2 = 1 - z then its direction ratio are

- (a) 1/3, 1/6, 1
- (b) -1/3, 1/6, 1
- (c) 1/3, -1/6, 1
- (d) 1/3, 1/6, -1

Answer: (a) 1/3, 1/6, 1

Give 
$$3x + 1 = 6y - 2 = 1 - z$$

$$= (3x + 1)/1 = (6y - 2)/1 = (1 - z)/1$$

$$= (x + 1/3)/(1/3) = (y - 2/6)/(1/6) = (1 - z)/1$$

$$= (x + 1/3)/(1/3) = (y - 1/3)/(1/6) = (1 - z)/1$$

Now, the direction ratios are: 1/3, 1/6, 1

# Question 15.

Under what condition does the equation  $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d$  represent a real sphere

(a) 
$$u^2 + v^2 + w^2 = d^2$$

(b) 
$$u^2 + v^2 + w^2 > d$$

(c) 
$$u^2 + v^2 + w^2 < d$$

(d) 
$$u^2 + v^2 + w^2 < d^2$$

Answer: (b)  $u^2 + v^2 + w^2 > d$ 

Equation  $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d$  represent a real sphere if

$$u^2 + v^2 + w^2 - d > 0$$

$$\Rightarrow$$
  $u^2 + v^2 + w^2 > d$ 

## Ouestion 16.

The locus of a first-degree equation in x, y, z is a

- (a) sphere
- (b) straight line
- (c) plane
- (d) none of these

Answer: (c) plane

In an x-y-z cartesian coordinate system, the general form of the equation of a plane is

$$ax + by + cz + d = 0$$

It is an equation of the first degree in three variables.

# Question 17.

The image of the point P(1,3,4) in the plane 2x - y + z = 0 is

- (a) (-3, 5, 2)
- (b) (3, 5, 2)
- (c)(3, -5, 2)
- (d)(3, 5, -2)

Answer: (a) (-3, 5, 2)

Let image of the point P(1, 3, 4) is Q in the given plane.

The equation of the line through P and normal to the given plane is

$$(x-1)/2 = (y-3)/-1 = (z-4)/1$$

Since the line passes through Q, so let the coordinate of Q are (2r + 1, -r + 3, r + 4)

Now, the coordinate of the mid-point of PQ is

$$(r+1, -r/2 + 3, r/2 + 4)$$

Now, this point lies in the given plane.

$$2(r+1) - (-r/2 + 3) + (r/2 + 4) + 3 = 0$$

$$\Rightarrow$$
 2r + 2 + r/2 - 3 + r/2 + 4 + 3 = 0

$$\Rightarrow 3r + 6 = 0$$

$$\Rightarrow$$
 r = -2

Hence, the coordinate of Q is (2r + 1, -r + 3, r + 4) = (-4 + 1, 2 + 3, -2 + 4)

$$=(-3, 5, 2)$$

#### Question 18.

The distance of the point P(a, b, c) from the x-axis is

- (a)  $\sqrt{(a^2+c^2)}$
- (b)  $\sqrt{(a^2 + b^2)}$
- (c)  $\sqrt{(b^2+c^2)}$
- (d) None of these

Answer: (c)  $\sqrt{(b^2+c^2)}$ 

The coordinate of the foot of the perpendicular from P on x-axis are (a, 0, 0).

So, the required distance =  $\sqrt{((a-a)^2 + (b-0)^2 + (c-0)^2)}$ 

$$=\sqrt[4]{(b^2+c^2)}$$

## Question 19.

The vector equation of a sphere having centre at origin and radius 5 is

- (a) |r| = 5
- (b) |r| = 25
- (c)  $|r| = \sqrt{5}$
- (d) none of these

Answer: (a) |r| = 5

We know that the vector equation of a sphere having center at the origin and radius R

$$= |\mathbf{r}| = \mathbf{R}$$

Here R = 5

Hence, the equation of the required sphere is  $|\mathbf{r}| = 5$ 

# Question 20.

The ratio in which the line joining the points(1, 2, 3) and (-3, 4, -5) is divided by the xy-plane is

- (a) 2:5
- (b) 3:5
- (c) 5:2
- (d) 5:3

Answer: (b) 3 : 5

Let the points are P(1, 2, 3) and Q(-3, 4, -5)

Let the line joining the points P(1, 2, 3) and Q(-3, 4, -5) is divided by the xy-plane at point R in the ratio k: 1

Now, the coordinate of R is

$$\{(-3k+1)/(k+1), (4k+2)/(k+1), (-5k+3)/(k+1)\}$$

Since R lies on the xy-plane.

So, z-coordinate is zero

$$\Rightarrow (-5k + 3)/(k + 1) = 0$$

